EE 451 - Practical Aspects of Motor Control

H.I. Bozma

Electric Electronic Engineering
Bogazici University

December 13, 2015
Actuation – DC Motors & Control

Introduction
Motor Selection
DC Motor Control
1. Calculate: Required torque and RPM to meet functional requirement
2. Research: DC motor manufacturers to determine the motors that satisfy these criteria
3. Compare: Published specifications of motors to determine optimal motor selection
4. Choose one or several motors for prototyping and testing.
Design Issues

- Motor requirements:
 - Required joint torque (Nm) - $\tau(t)$
 - Required gear peak torque (Nm) - τ_g
 - Required max input peak speed (rpm) - n_{in}

- Supplied voltage

- Physical constraints – Motor size
Design Constraints- Ex

- Accelerating a 6.8 kg, two-wheel diff. robot with wheel diameters 9.7 cm at a rate of 91 cm/sec^2.
- Top speed - Around 1.2 m/sec
- Supplied voltage = 12 V
- Motor size - Diameter around 5 cm, length around 10 cm
Torque Calculation

- \(\text{Force}_{\text{total}} = ma \rightarrow F_{\text{total}} = 6.8 \times 0.91 = 6.1 \text{ N} \)
- Two wheels \(\rightarrow 3.1 \text{ N/wheel} \)
- Torque - \(F \times r = 3.1 \times 0.049 \approx 0.15 \text{ Nm} \approx 150 \text{ mNm} \)
Required Wheel RPM

- Wheel diameter 9.7cm \rightarrow Wheel perimeter $\pi \times 0.097 = 0.305$ m
- Required speed: 1.2 m/sec \rightarrow 3.93 rps $\rightarrow \approx 236$ rpm
- Torque \(\approx 150 \text{ mNm} \)
- Required speed: \(\approx 236 \text{ rpm} \)
Actuation Issues

- DC Motor selection
- Gearbox selection
- DC motor control
Motor + Gearbox (Drive Train) Model for a Single Joint
Use Motor with Gear

- Output Torque (Transmission Shaft) = Input Torque (Motor) × Gear Reduction × Transmission Efficiency
Design Issues

- **Ultimate goal**
 - Required joint torque (Nm) - $\tau(t)$
 - Required gear peak torque (Nm) - τ_g
 - Required max input peak speed (rpm) - n_{in}

- **Motor + gear requirements**
 - Required motor torque (Nm) - τ_m
 - Required motor peak torque (Nm) - τ_p
 - Required motor peak speed (rpm) - n_p
Two motor groups - brushed and brushless DC motors.

- Nominal torque T_m - Maximum continuous torque
- The stall torque T_{mmax}: The peak torque of the motor.
- Maximum permissible speed N_{mmax}
 - Commutation system
 - Mechanical imbalance which shortens the service life of the bearings
Motor Selection Criteria

- **Nominal torque limit**: The root mean square (RMS) value of the required motor torque \leq Nominal torque of the motor T_m

- **Required peak torque** $\tau_p \leq$ Stall torque T_{m}^{max}

- **Required peak speed** $n_p \leq$ Maximum permissible speed N_{m}^{max}

- Motor technical datasheet
Gearbox Parameters

- Maximum rated torque of the gearbox T_g
- Allowable peak torque T_g^{max}
- Maximum permissible input speed N_g^{max}
Gearbox Selection

- RMC Torque value
 - A measure of the accumulated fatigue on a structural component
 - Reflects typical endurance curves of steel and aluminium
 - Gearbox lifetime

- RMC Torque value $\tau_{rmc} \leq$ Maximum rated torque of the gearbox T_g

- Required peak torque $\tau_g \leq T_g^{\text{max}}$

- Required maximum input peak speed $n_{\text{in}} \leq$ Maximum permissible gearbox input speed N_g^{max}
Simple Calculations

- $E_{\text{drop}} = I_{\text{no load}} R_{\text{armature}}$ (Free running motor at a given voltage)
- E_{battery} – Given
- $E_{\text{battery}} = K_E \omega + E_{\text{drop}} \rightarrow \omega$
- Output shaft speed $\omega = \frac{\omega}{\text{Transmission ratio}}$
Pulse Width Modulation (PWM)

- T_H – Time that a signal is at high state
- T – Period
- Duty cycle = $\frac{T_H}{T} \times 100$
PWM & Control

- PID cycle time (0.1 sec)
- Motor speed (30 rpm)
- Encoder resolution (500 counts/rev)
- PWM frequency (1kHz)
PWM Circuit

![PWM Circuit Diagram]

- IC1: 74AC14 Hex (six) Schmitt-Trigger Inverters
- R2: 10 kΩ variable
- D1: 1N914
- D2
- C1: 0.1 μF
- C2: 0.1 μF

Variable Duty Cycle Square Wave
H-Bridge

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Motor moves right</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Motor moves left</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Motor free runs to stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Motor brakes</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Motor brakes</td>
</tr>
</tbody>
</table>
H-Bridge: Operation Modes
H-Bridge: MOSFET H-Bridge
H-Bridge Motor Circuit
Control System

Diagram:

- Processor
- H-Bridge Circuit
- DC Motor
- Encoder
PID Control

- **Error term:**
 - The difference btw input and output of the system
 - Measured in terms of a number of encoder counts per unit time.

- **Proportional gain:** K_p multiplied by error

- **Integral gain**
 - K_I times error term and added to previous integral term
 - Provides response to accumulated error

- **Derivative gain:**
 - K_d times the difference between the previous error and the current error
 - Responds to change in error from one PID cycle to the next.
Watch out for!

- Integral windup
- PWM term overflow
- PID variable overflow
PID Tuning - Brute Force

- How to determine coefficients?
- What is the response?
PID Tuning - Brute Force

- For a variety of K_p, K_D, K_I values
- Store the feedback speed value into an array element for the first 20 PID executions. (2 seconds)
- Change the set speed from 0 to 60% of the motors maximum speed.
- After 2 seconds, stop the motor and print the array data
- Choose the best response